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This article concerns two-echelon inventory/distribution system, consisting of a
warehouse and a retailer. We assume that the demand is deterministic and
stockouts are not permitted. Two criteria are considered: to minimize the annual
inventory cost and the annual total number of damaged items by improper
shipment handling. The problem consists of determining the non-dominated
inventory policies in such a way that the trade-off between both criteria is
achieved. We present the characterization of the non-dominated optimal solution
set and we use this result to correct the solution method previously proposed by
other authors for a problem with identical cost structure. An efficient algorithm
to calculate the non-dominated solution set is introduced. Computational results
on several randomly generated problems are reported.

Keywords: Pareto set; two-echelon inventory/distribution system; level curves;
warehouse

2000 Mathematics Subject Classification: 90B05; 90B06; 90C29

1. Introduction

We deal with two-echelon inventory/distribution (I/D) systems, where it is appropriate to
coordinate the control of different stock keeping units. We look at the case of an item
being stocked at two locations with resupply being made between them.

The retail outlet is replenished from the warehouse which is supplied from an outside
supplier. In such a situation, coordinated control makes sense in that, for example,
replenishment decisions at the retailer outlet impinge as demand on the warehouse.
We consider that the demand at the warehouse is dependent on the demand (and stocking
decisions) of the customers. We refer to this as a dependent demand situation in contrast
with classical demands for different stock keeping units, which are considered as being
independent. At each location, we assume that stockouts are not permitted and a
continuous review economic order quantity policy is used.

When a unique criterion is considered, the decision involves the choice of a lot size for
each facility (warehouse and retailer), which minimizes the inventory cost, that is, the sum
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of the holding cost plus the ordering cost at both the warehouse and retailer.
Determination of the optimal policy for a two-echelon serial I/D system is not obvious,
mainly because of the complex interactions between echelons [7]. Considering
deterministic demand, however, it is possible to model a multi-echelon system using the
concept of echelon stock, first introduced by Clark and Scarf [3]. They defined the echelon
stock of echelon j (in a general multi-echelon system) as the number of units in the system
that are at, or have passed through, echelon j but have as yet not been specifically
committed to outside customers (when backorders are permitted the echelon stock can be
negative). With this definition and uniform end-item demand, each echelon stock has a
sawtooth pattern with time.

Taking into account the integer-ratio policy proposed by Taha and Skeith [10]
(its optimality for two-echelon systems was proved by Crowston et al. [4] and Williams
[11]), it is simple to compute the average value of an echelon stock and the echelon holding
costs. This policy tells us that an optimal set of lot sizes exists such that the lot size at each
facility is a positive integer multiple of the lot size at its successor facility. This fact was
used by Crowston et al. [4] in the development of a dynamic programming approach for
determining optimal lot sizes. Some other interesting models about multi-echelon systems
are also studied in Silver and Peterson [8].

Traditional approaches for multi-echelon I/D systems usually have one global
objective, cost minimization, typically optimized in an unconstrained manner. However,
new approaches in multi-echelon systems considering different objectives have been also
developed. In particular, these objectives involved in inventory management concern the
reduction of the inventory cost, the minimization of the transportation cost, the reduction
of the expected number of stockouts per year (customer service), among others.
Accordingly, the goal of these problems consists of determining the set of non-dominated
solutions, also known as Pareto-optimal set or efficient solution set, which contains
solutions (vectors) where none of the components can be improved without deterioration
to at least one of the other components in the objective space.

A significant number of researchers in inventory management have made notable
efforts to deal with more than one performance measure or objective. Star and Miller [9]
determined a trade-off between two measures: the number of annual orders (i.e. workload)
and the average investment in the inventory. They developed the concept of an optimal
policy curve, where the points on this curve represent policies between which the decision
maker is indifferent. Points off the curve are either infeasible or sub-optimal, but can be
improved by moving back to the curve. Gardnet and Dannenbring [5] extended the above
concept to a three-dimensional optimal policy surface by adding the performance measure
of customer service when they analyse a probabilistic multi-item distribution system.
Brown [2] also derived an exchange curve between two performance measures such as
workload, investment in inventory or customer service for both deterministic and
probabilistic inventory problems. Zeleny [12] discussed Star and Miller’s work in the sense
that, the optimal policy curve (or surface) is equivalent to non-dominated solutions in
Multiple Criteria Decision Making (MCDM). Recently, Puerto and Fernández [6] also
analysed some inventory models from the MCDM perspective.

Bookbinder and Chen [1] applied the MCDM methodology to a two-echelon serial
inventory/distribution system. They discussed different models with deterministic and
probabilistic demand, and they assumed that marginal inventory costs were known. Three
non-linear multiobjetive programming models and corresponding solution approaches
were presented to obtain non-dominated inventory policies achieving trade-offs among
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objectives such as customer service, inventory investment and transportation cost. Their

results were MCDM generalizations of Brown’s exchange curve, Star and Miller’s optimal

policy curve and Gardne and Dannenbring’s optimal policy surface.
In this article, we show a new MCDM approach for determining all the admissible lot

sizes for a two-echelon inventory/distribution system considering deterministic demand.

This problem can be seen as a two-objective non-linear mixed-integer programming

model. The first objective consists of minimizing the annual inventory cost, i.e. the sum of

the total holding cost plus ordering costs at both warehouse and retailer. The second

objective concerns the minimization of the annual total number of damaged items by

improper shipment handling, which is assumed to be dependent on the number of

shipments per year and on the order quantity. Thus, as the annual number of shipments

increases so does the number of items which could be damaged due to negligence of the

personnel handling the items. The minimization of this latter objective is mainly justified

when fragile goods are handled. In addition, two constrains are considered: the first

concerns the retailer inventory capacity and the capacity of the vehicle for delivery, and the

second one is related to the restriction of the integer-ratio policy previously mentioned.

We solve the problem exactly by finding the whole set of non-dominated policies by means

of an exhaustive case analysis of the model.
Notice that the cost structure of the problem under study is similar to that presented in

Bookbinder and Chen [1]. Therefore, as it could be expected, their solution approach

should give the non-dominated solution set for our problem as well. However, as we will

prove further on, their solution method for the deterministic case is not correct since it

provides no good solutions, generating dominated policies.
The rest of the article is organized as follows. In Section 2, we introduce some notation

and we state the model. We continue in Section 3, introducing some preliminary results,

which simplify the determination of the Pareto solution set. In Section 4, the form of the

non-dominated solution set is studied. This form depends on several cases as the results in

Section 4 show. In addition, we use our solution method, in Section 5, to show that the

approach proposed by Bookbinder and Chen to calculate efficient policies is not correct.

Some computational results are discussed in Section 6. We conclude in Section 7 with a

summary and a brief discussion of implications of the model.

2. Model formulation and notation

We consider a two-echelon inventory/distribution system where a single item is provided

by an outside supplier, stocked at the warehouse and distributed to customers through one

retailer.
It is assumed throughout that the demand is known with certainty. Perhaps, this is

admittedly an idealization, but it is important to study for two reasons. First, the model

may reveal the basic interactions among replenishment quantities at the different echelons.

Second, we could choose, where possible, the pragmatic route of developing replenishment

strategies based on deterministic demand, and then, conditional on these results,

establishing safety stocks to provide appropriate protection against uncertainties.
If there are delays in moving between echelons, the delays are constant and not a

function of lot size. No stockouts are permitted in the system.
Let us introduce some preliminary notation. Let Qr and Qw denote the variables of the

problem, which correspond to the order quantity at the retailer (in units) and the order

Optimization 255



quantity at the warehouse (in units), respectively. In addition, we present below the

parameters of the model.

D Constant deterministic demand rate, in units/year.
Ar Fixed ordering cost of a replenishment at the retailer, in money units.
Aw Fixed ordering cost of a replenishment at the warehouse in money

units.
�(Qr) Average number of damaged items per shipment from the warehouse

to the retailer, when the order quantity at the retailer is Qr.
hr Inventory holding cost rate at the retailer, in money/unit/year.
hw Inventory holding cost rate at the warehouse, in money/unit/year.
Jr Inventory capacity at the retailer, in units.
V Vehicle capacity, in units.
Q0 Maximum quantity to order at the retailer, in units (i.e. min{Jr,V,D})

HOC Sum of the total holding plus ordering costs per year.
DI Total number of damaged items per year.

We can consider that hw5 hr. This assumption is normal and logical, because a

warehouse is generally more specialized than a retailer in terms of facilities and personnel.

The average annual cost hw to carry a unit of inventory at the warehouse is thus less

than hr, the corresponding cost at the retailer. This assumption remains throughout the

rest of our article.
The goal is the minimization of the criteria (HOC,DI ) so that all the demand is

satisfied and no backorders occur. Two general criteria are considered. The first objective

(HOC) represents the sum of costs, which are assumed to depend upon the echelon

(warehouse or retailer), there being a fixed charge for ordering, and a linear per unit

installation inventory holding cost. The second one (DI) represents the annual total

number of damaged items which depends on the order quantity at the retailer and on the

number of shipments from the warehouse to the retailer.
The two controllable (or decision) variables are the replenishment sizes Qr and Qw.

We have to take into account that the optimality of the integer-ratio policy (the lot size at a

given echelon is an integral multiple of the lot size at its successor echelon) was proved for

two-echelon systems [4,11]. Therefore, we follow this integer-ratio policy and set

Qw ¼ nQr

where n is a positive integer.
The HOC objective corresponds to the annual inventory cost which depends on the

two decision variables Qr and n. Thus, considering the above integer-ratio policy this cost

will be

HOCðQr, nÞ ¼
ArD

Qr
þ
AwD

nQr
þ
hrQr

2
þ hw

n� 1ð ÞQr

2
: ð1Þ

The DI objective is a function of the variable Qr, i.e.

DIðQrÞ ¼ �ðQrÞ
D

Qr
: ð2Þ

Obviously, 0��(Qr)�Qr�D, and it seems reasonable to think that as Qr increases �(Qr)

is non-decreasing. Besides, we assume that the average number of damaged items per
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shipment �(Qr) is slightly sensitive to changes of the order quantity Qr. In other words, the

elasticity of �(Qr) with respect to Qr is strictly smaller than one. Therefore, we admit that

�(Qr) is a non-decreasing function on [0,D], with �(0)¼ 0 and �0(Qr)Qr5�(Qr). Observe

that if the elasticity is equal to one, then �(Qr)¼ kQr for some k2 [0, 1], and DI(Qr)¼ kD.

Hence, it would not make sense to consider the second criterion DI(Qr), since it remains

constant.
There are two constraints for the problem. The first concerns the maximum quantity to

order at the retailer, which depends on the minimum between the inventory capacity at the

retailer and the capacity of the vehicle for delivery. The second constraint restricts n to be a

positive integer. Thus, the problem consists of finding Qr and an integer n that minimize

(1) and (2), subject to 05Qr�Q0.
It is worth noting that this problem is a two-objective non-linear mixed-integer

programming problem. Unfortunately, these kinds of problems are not easy to solve.

Continuous multiobjective problems can be studied using scalarization results or

constrained parametric optimization, which most of the times is a tedious task.

Integer or combinatorial multiobjective problems are very complex enumeration

problems that can be faced using techniques such as dynamic programming, branch-

and-bound and branch-and-cut, among others, to obtain a formal approach to the

optimal solution set. Non-linear mixed-integer multiobjective problems have all the

difficulties inherent in the two former families of problems. In fact, it is not possible

to use any of the tools valid either for the continuous or the discrete multiobjective

problems and therefore, it is necessary to develop specific approaches for each new

problem. In spite of their difficulty, it is possible to find an appropriate way to solve

the considered model, performing a complete case analysis of the problem and

identifying the whole set of non-dominated solutions. These results are presented in

the following sections.

3. Preliminary results

As we commented previously, our problem fits into a two-objective non-linear mixed-

integer programming model for the warehouse/retailer system under deterministic

demand. To deal with this problem it is appropriate to use the multiple criteria decision

making (MCDM) methodology. The goal is to find the non-dominated solution set, also

called Pareto-optimal solution set, of the bicriteria biechelon inventory/distribution

(BBID) problem given by:

BBID: v�min HOCðQr, nÞ,DIðQrÞð Þ

s:t: Qr 2 ð0,Q0�

n positive integer:

ð3Þ

Thus, the Pareto-optimal solution set P is defined as

P¼ fðQr,nÞj there does not exist ðQ
0
r,n
0Þ : HOCðQ0r,n

0Þ �HOCðQr,nÞ and DIðQ0rÞ �DIðQrÞ,

with at least one of the inequalities being strictg:

Before characterizing the set P, some specific properties of the objective functions are

stated. First, it can be easily shown that DI(Qr) is a strictly decreasing function on (0,D].
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Additionally, it is clear that function HOC(Qr, n) is convex in the region: K¼ {(Qr, n):
05 n51, 05Qr�B(n)}, where

BðnÞ ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AwD

hw
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Ar

Aw
n

r
� 1

" #vuut , ð4Þ

and HOC(Qr, n) reaches its global minimum at ðQ�r , n
�Þ, being

Q�r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ArD

hr � hw

s
, ð5Þ

n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhr � hwÞAw

hwAr

s
: ð6Þ

Furthermore, for a fixed n, the value of Qr which minimizes function HOC(Qr, n) is
given by

QrðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðArnþ AwÞ

n2hw þ nðhr � hwÞ

s
: ð7Þ

On the contrary, when Qr is fixed and n is considered as a real-valued variable, the value
of n which makes function HOC(Qr, n) minimal can be obtained by

bnðQrÞ ¼
1

Qr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2AwD

hw

s
ð8Þ

Assuming that n and Qr are real-valued variables, both QrðnÞ and bnðQrÞ are strictly
decreasing convex functions of n and Qr, respectively. This statement is easily proved since
the first derivatives of both functions exist and they are increasing with respect to n and Qr,
respectively. In order to show when function QrðnÞ is greater thanbnðQrÞ or vice-versa, let us
define the following expression derived from (8),

bQrðnÞ ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2AwD

hw

s
: ð9Þ

Moreover, it can be easily shown that functions QrðnÞ and
bQrðnÞ intercept at point

ðQ�r , n
�Þ, given by (5) and (6).

LEMMA 1 If n� n*, then QrðnÞ is greater than or equal to bQrðnÞ, and the reverse
when n5 n*.

Proof If n� n*, then n2 � ððhr � hwÞAwÞ=hwAr and, hence 2DhwArn
2
� 2D(hr� hw)Aw.

Thus, adding 2DAwnhw and multiplying by n both terms of the previous expression,
we obtain that

2DðArnþ AwÞ

n2hw þ nðhr � hwÞ
�

2AwD

n2hw

or, in other words, QrðnÞ �
bQrðnÞ (see Figure 1).

Otherwise, if n5 n*, it is clear that QrðnÞ < bQrðnÞ: g
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LEMMA 2 For a fixed n, n4 1, the functions HOC(Qr, n) and HOC(Qr, n� j), 1� j� n� 1,

intercept in a unique value Qn, n�j
r , which is given by

Qn, n�j
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AwD

hwnðn� jÞ

s
: ð10Þ

Besides, bQrðnÞ < Qn, n�j
r < bQrðn� jÞ:

Proof Just computing HOC(Qr, n)¼HOC(Qr, n� j) and, taking into account that

bQrðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2AwD

n2hw

s
5Qn, n�j

r and bQrðn� jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AwD

ðn� jÞ2hw

s
> Qn, n�j

r ,

the result follows. g

Characterizing the non-dominated solution set P requires to consider the level curves

of function HOC(Qr, n). Accordingly, let us denote the family F of level curves by

F ¼ ’lðQr, nÞ ¼ 0: ’lðQr, nÞ ¼ ½hr þ hwðn� 1Þ�nQ2
r � 2 lnQr þ 2DðAw þ ArnÞ, l 2 R n f0g

� �
Notice that these curves are the level curves of HOC(Qr, n), i.e. they are sets of

the form {(Qr, n)2R
2 :HOC(Qr, n)¼ l}. Since HOC(Qr, n) is convex in K, the

region bounded by curve ’l(Qr, n)¼ 0 corresponds to a convex set for any value l

(see Figure 1).

4. Characterization of the Pareto set

We start this section discarding those points in R
2 which are not to be included in P with

certainty. The following lemmas reduce the admissible set of candidate points to be Pareto

solutions to those that belong to a given region.

Figure 1. Illustration of QrðnÞ; bQrðnÞ and some level curves in F . (a) situation when Q0 � Q�r ; and
(b) when Q0 > Q�r .
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LEMMA 3 The non-dominated solution set P is included inside region R, characterized by

R ¼ ðQr, nÞ: QrðnÞ � Qr � Q0, and n is a positive integer
� �

ð11Þ

Proof By contradiction, let us assume that point (Qr, n) is a feasible solution which is not

in R, i.e. Qr < QrðnÞ: Then (Qr, n) is dominated by ðQrðnÞ, nÞ since both criteria would be

improved by convexity of HOC and because DI is strictly decreasing with Qr. g

Since the characterization of the Pareto solution set depends on the relative positions

of Qr* and Q0, we should distinguish two possible cases, namely, if Q0�Qr* or the reverse.

The candidate points to be Pareto-optimal solutions are plotted as bold lines in Figure 1.

4.1. When Q0 ·Q�r

We need to introduce the following notation before characterizing the non-dominated

solution set. Let bn0 denote the integer value of bnðQ0Þ where function HOC(Q0, n) reaches

its minimum, i.e. bn0 ¼ argfmin
n2fbbnðQ0Þc, dbnðQ0Þe

gHOCðQ0, nÞg, where bbnðQ0Þc and dbnðQ0Þe

represent the largest integer smaller than and the smallest integer larger than bnðQ0Þ,

respectively. In case of HOCðQ0, bbnðQ0ÞcÞ ¼ HOCðQ0, dbnðQ0ÞeÞ, then we set bn0 ¼ bbnðQ0Þc.

Furthermore, assuming that �nðQ0Þ stands for the value such that Qrðn0Þ ¼ Q0, let �n0 be the

closest integer value greater than �nðQ0Þ: Since Q0 � Q�r , by virtue of Lemma 1, it is clear

that �n0 � dbnðQ0Þe and hence �n0 �bn0:
LEMMA 4 Those points (Qr, n) in R with n > �n0 or n <bn0 are not included in P.

Proof By contradiction, we assume that (Qr, n) is an efficient point with n > �n0:
Let (Q0, n1) be the point where the straight line joining points (Qr, n) and ðQ

�
r , n
�Þ intercepts

with line Qr¼Q0 (see Figure 2(a)). Since function HOC is convex, HOC(Q0, n1) is smaller

than HOC(Qr, n) and, also, DI(Qr)4DI(Q0) because Qr5Q0. Therefore, (Qr, n) is

dominated by (Q0, n1). Moreover, by Lemma 1 and by convexity of function bQrðnÞ, point

(Q0, n1) is even dominated by ðQ0, �n0Þ: Therefore, point (Qr, n) cannot be an efficient point.
Following a similar reasoning, it can be shown that any point (Qr, n) with n <bn0 is

dominated by point ðQ0,bn0Þ. g

Figure 2. (a) Illustration of Lemma 4, and (b) Illustration of Theorem 5 when n0 ¼bn0 þ 1.

260 J. Gutiérrez et al.



We can now use the level curves of function HOC introduced before to simplify the

characterization of set P. Accordingly, let qil denote the greatest value of Qr where curve

’l(Qr, n)¼ 0 intercepts with line n¼ i. In particular, let q �n0
l0
be the greatest value, if it exists,

on the straight line n ¼ �n0 with l0 ¼ HOCðQ0,bn0Þ, i.e. the greatest value such that

HOCðq �n0
l0
, �n0Þ ¼ HOCðQ0,bn0Þ: Additionally, let qbn0þ1l0

denote the greatest value, if it exists,

on the straight line n ¼bn0 þ 1 such thatHOCðqbn0þ1l0
,bn0 þ 1Þ ¼ HOCðQ0,bn0Þ. The following

theorem uses these values to identify the non-dominated solution set in the case of

Q0 � Q�r :

THEOREM 5 When Q0 � Q�r , the Pareto solution set P, assuming that l0 ¼ HOCðQ0,bn0Þ, is
given as follows

ð1Þ if �n0 ¼bn0, : P¼ fðQr, �n0Þ : Qr 2 ½Qrð �n0Þ,Q0�g

ð2Þ if �n0 ¼bn0þ 1,

ðaÞ if Qrð �n0Þ � q �n0
l0
�Q0 : P¼ fðQr, �n0Þ : Qr 2 ½Qrð �n0Þ,q

�n0
l0
Þg [ fðQ0,bn0Þg

ðbÞ if q �n0
l0
>Q0 : P¼ fðQr, �n0Þ : Qr 2 ½Qrð �n0Þ,Q0�g

ðcÞ otherwise : P¼ fðQ0,bn0Þg
ð3Þ if �n0 >bn0þ 1,

ðaÞ if qbn0þ1l0
¼Q0 : P¼ fðQ0,bn0þ 1Þ, ðQ0,bn0Þg

ðbÞ otherwise : P¼ fðQ0,bn0Þg
Proof By virtue of Lemma 4, the candidate points to be Pareto solutions are of the form

(Qr, n) with bn0 � n � �n0: In particular, when �n0 ¼bn0 or n0 ¼bn0 þ 1, these points lie on the

line n ¼ �n0 from Qrð �n0Þ to the value corresponding to minfq �n0
l0
,Q0g and, also point ðQ0,bn0Þ,

which is represented by the largest black dot in Figure 2(a) and (b). Moreover, the fact that

q �n0
l0

does not exist implies that there is no point on n ¼ �n0 with HOC value equal to

l0 ¼ HOCðQ0,bn0Þ: Indeed, this result indicates that the HOC value of any point on line

n ¼ �n0 is greater than HOCðQ0,bn0Þ, since any point on this line can be seen as the

interception point between ’l(Qr, n)¼ 0 and n ¼ �n0, with l > HOCðQ0,bn0Þ: Therefore,
when either q �n0

l0
does not exist or q �n0

l0
¼ Q0, the Pareto solution set is of the form:

P ¼ fðQ0,bn0Þg: On the contrary, if q �n0
l0

exists, two cases can arise, namely,

Qrð �n0Þ � q �n0
l0
� Q0 or Q0 < q �n0

l0
: Notice that, by Lemma 3, the case Qrð �n0Þ > q �n0

l0
leads to

dominated solutions.
Thus, when Qrð �n0Þ � q �n0

l0
� Q0, there exists a point ðq �n0

l0
, �n0Þ, depicted as a rhomb in

Figure 2(b), with the same value of HOC than point ðQ0,bn0Þ but with worse value for

the second criterion. Hence, ðq �n0
l0
, �n0Þ is dominated by ðQ0,bn0Þ: In addition, since

function QrðnÞ reaches its minimum at ðQrð �n0Þ, �n0Þ when n ¼ �n0, all the points in

½Qrð �n0Þ, q
�n0
l0
Þ have smaller HOC value than point ðq �n0

l0
, n0Þ and, therefore, they are non-

dominated solutions. Accordingly, the Pareto solution set is as follows:

P ¼ fðQr, �n0Þ : Qr 2 ½Qrð �n0Þ, q
�n0
l0
Þg [ ðQ0,bn0Þ:

On the contrary, if Qrð �n0Þ < Q0 < q �n0
l0
, we can also exploit the fact that QrðnÞ is strictly

convex to guarantee that points ½Qrð �n0Þ,Q0� on line n ¼ �n0 have smaller HOC values than

ðQ0,bn0Þ and, hence, P ¼ fðQr, �n0Þ: Qr 2 ½Qrð �n0Þ,Q0�g:
When �n0 >bn0 þ 1, the unique non-dominated solution is point ðQ0,bn0Þ

unless qbn0þ1l0
¼ Q0, in such a case, the Pareto solution set contains points ðQ0,bn0 þ 1Þ

and ðQ0,bn0Þ: g
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4.2. When Q0`Q�r

From now on, let �n denote the closest integer value to n* which minimizes HOCðQrðnÞ, nÞ,

that is, �n ¼ argfminn2f n�b c, n�d egHOCðQrðnÞ, nÞg, with QrðnÞ � Q0, and where bn*c stands for

the closest integer value smaller than n*, and dn*e is the closest integer value greater

than n*. In case of HOCðQrð n
�b cÞ, n�b cÞ ¼ HOCðQrð n

�d eÞ, n�d eÞ, we set �n ¼ n�b c since, by

convexity of QrðnÞ, point ðQrð n
�b cÞ, n�b cÞ is to the right of ðQrð n

�d eÞ, n�d eÞ and, therefore,

the second criterion DI(Qr) is improved. Observe that, from definition of �n, �n �bn0
when Q0 > Q�r :

The admissible set of candidate points to be Pareto solutions can be more specifically

characterized, according to the following lemmas.

LEMMA 6 When Q0 > Q�r , those points (Qr, n) in R with n <bn0 or n > �n are not to be

included in P.

Proof Let (Qr, n) be an efficient point with n > �n. To show, by contradiction, that (Qr, n)

cannot be a non-dominated point we should distinguish two cases, namely, when Qr � Q�r
and Qr > Q�r . We first focus our attention on the case Qr � Q�r . Accordingly, let p1 denote

point (Qr, n). Since function HOC is strictly convex, point p1 is dominated by that point

corresponding to the interception point (plotted by a white dot in Figure 3) of the segment

line joining points p1 and ðQ�r , n
�Þ with straight line n ¼ �n. On the other hand, when

Qr > Q�r , let p2 denote point (Qr, n). In this case, since function bQrðnÞ provides the point

with minimumHOC cost for a fixed Qr, it is easy to see that point p2 is dominated by point

ðQr, dbnðQrÞeÞ depicted by a white dot in Figure 3. Therefore, in both cases, point (Qr, n) is

dominated.
Moreover, applying the same reasoning, namely, that function bQrðnÞ provides the point

with minimum HOC cost for a fixed Qr, it can be easily shown that any point p3¼ (Qr, n)

with n <bn0 is dominated by point ðQr,bn0Þ. g

As a result of Lemma 6, the maximum number of intervals containing non-dominated

solutions is k ¼ �n �bn0 þ 1:

Figure 3. Illustration of Lemma 6.
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We show below that the Pareto solution set P consists of union of intervals, which are
located in different lines n, with bn0 � n � �n: In what follows, we denote by P(n) the set of
non-dominated points on line n. Therefore, the Pareto solution set is given by
P ¼ [ �n

n¼bn0 PðnÞ: First, we need to show that HOCðQrð �nÞ, �nÞ, HOCðQrð �n� 1Þ, �n� 1Þ, . . . ,

HOCðQrðbn0Þ,bn0Þ represent a sequence of increasing values.

PROPOSITION 7 For all n with bn0 < n � �n, HOCðQrðnÞ, nÞ < HOCðQrðn� 1Þ, n� 1Þ holds.

Proof Without loss of generality, consider values n*, �n and �n� 1: By contradiction, let us
assume that HOCðQrð �nÞ, �nÞ � HOCðQrð �n� 1Þ, �n� 1Þ: Since ðQ�r , n

�Þ represents the
point where function HOC reaches the minimum, we have that HOCðQrðn

�Þ ¼

Q�r , n
�Þ < HOCðQrð �nÞ, �nÞ. Therefore, there should be two points a ¼ ðQ1, �nÞ and

b ¼ ðQ2, �nÞ on n ¼ �n, with Q15Q2, which intercept with curve ’l(Qr, n)¼ 0, where
l ¼ HOCðQrð �n� 1Þ, �n� 1Þ (see Figure 4). Accordingly, theHOC value in points a and b on
n ¼ �n coincides with HOCðQrð �n� 1Þ, �n� 1Þ, so points a, b and ðQrð �n� 1Þ, �n� 1Þ are
included in the same level curve ’l(Qr, n)¼ 0. However, this result contradicts the fact that
ðQrð �nÞ, nÞ is the unique point that minimizes function HOC for n ¼ �n, and hence,
inequality HOCðQrð �nÞ, �nÞ � HOCðQrð �n� 1Þ, �n� 1Þ is not possible. g

We show later on that in the determination of the whole Pareto set it is only necessary
to successively determine the non-dominated solutions corresponding to consecutive
values of n. Thus, taking into account that QrðmÞ < Qrðm� 1Þ for a fixed integer value m,
since QrðnÞ is a strictly decreasing function, and according to Proposition 7, the only two
combinations of HOC values for consecutive values of n are depicted in Figure 5.
Therefore, it is clear that the Pareto set is updated adding a new interval on line n¼m� 1,
which starts from point maxfQm,m�1

r ,Qrðm� 1Þg forbn0 < m � �n, and Qm,m�1
r given by (10).

The following corollary sheds light on the determination of efficient solutions when only
two consecutive values of n are considered.

Figure 4. Illustration of Proposition 7.
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COROLLARY 8 Given lines n¼m and n¼m� 1, the sets of non-dominated solutions P(m)

and P(m� 1) on these lines are given as follows:

(1) If Qrðm� 1Þ ¼ maxfQm,m�1
r ,Qrðm� 1Þg then

PðmÞ ¼ ½QrðmÞ,q
m
l Þ, with l¼HOCðQrðm� 1Þ,m� 1Þ, and Pðm� 1Þ ¼ ½Qrðm� 1Þ,a1�

(2) If Qm,m�1
r ¼ maxfQm,m�1

r ,Qrðm� 1Þg then

PðmÞ ¼ ½QrðmÞ,Q
m,m�1
r Þ, and Pðm� 1Þ ¼ ½Qm,m�1

r , b1�

where values a1 and b1 depend on the interception points with curve HOC(Qr,m� 2).

The following result shows that the determination of P is reduced to successively

evaluate functions HOC corresponding to two consecutive values of n.

THEOREM 9 The Pareto-optimal solution set can be computed via pairwise comparison of

functions HOC corresponding to consecutive values of n.

Proof Assume that the efficient points related to lines n¼m and n¼m� 1 have been

already determined. Accordingly, the sets P(m) and P(m� 1) are obtained considering only

one of the two cases, namely (1) and (2), introduced in Corollary 8. Moreover, consider

that we analyse line n¼m� 2 in the process of determination of P. Likewise, the set

P(m� 2) is given by either case (1) or case (2) in Corollary 8 as a result of the comparison

of the curves HOC(Qr,m� 1) and HOC(Qr,m� 2). Hence, four possible relationships

between the pairs of curves HOC(Qr,m), HOC(Qr,m� 1) and HOC(Qr,m� 1),

HOC(Qr,m� 2) can arise, namely 1–1, 1–2, 2–1, 2–2 (see Figure 6). We proceed to

evaluate each combination separately.

(a) Case 1–1: When the pairs of curves HOC(Qr,m), HOC(Qr,m� 1) and

HOC(Qr,m� 1), HOC(Qr,m� 2) are both of the form (1), it is easily proved

that PðmÞ ¼ ½QrðmÞ, q
m
l Þ, with l ¼ HOCðQrðm� 1Þ,m� 1Þ, Pðm� 1Þ ¼

½Qrðm� 1Þ, qm�1l0 �, with l0 ¼ HOCðQrðm� 2Þ,m� 2Þ and the interval associated

to P(m� 2) begins at point Qrðm� 2Þ (see Figure 6(a)). Therefore, case 1–1 is

reduced to analyse two cases of the form (1) independently since adding curve

Figure 5. Feasible cases when two HOC functions corresponding to two consecutive values of n
are faced.
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HOC(Qr,m� 2) does not alter the efficient solutions corresponding to curves
HOC(Qr,m) and HOC(Qr,m� 1).

(b) Case 1–2: When the combination of curves HOC(Qr,m) and HOC(Qr,m� 1) is of
the form 1 and the pair of curves HOC(Qr,m� 1) and HOC(Qr,m� 2)
corresponds to the type 2, it can be easily shown that PðmÞ ¼ ½QrðmÞ, q

m
l Þ, with

l ¼ HOCðQrðm� 1Þ,m� 1Þ, Pðm� 1Þ ¼ ½Qrðm� 1Þ,Qm�1,m�2
r � and the interval

associated to P(m� 2) begins at point Qm�1,m�2
r (see Figure 6b)). Again, the

inclusion of curve HOC(Qr,m� 2) does not affect the efficient solutions
corresponding to curves HOC(Qr,m) and HOC(Qr,m� 1), and hence, case 1–2
can be dealt with separately.

(c) Case 2–1: When the combination of curves HOC(Qr,m) and HOC(Qr,m� 1) is of
the form (1) and the pair of curves HOC(Qr,m� 1) and HOC(Qr,m� 2)
corresponds to the type (1), two different situations can arise. In particular,
we must distinguish two cases, namely, if HOCðQrðm� 2Þ,m� 2Þ >
HOCðQm,m�1

r ,m� 1Þ or HOCðQrðm� 2Þ,m� 2Þ � HOCðQm,m�1
r ,m� 1Þ: The

latter case, depicted in Figure 7, is not feasible since qm�1l0 < qml0 < Qrðm� 2Þ
with l0 ¼ HOCðQrðm� 2Þ,m� 2Þ, which contradicts the fact that level curve
’l0 ðQr,mÞ ¼ 0 is a convex set containing level curves ’lðQr, nÞ ¼ 0, with m < m0 � �n
and l ¼ HOCðQrðm

0Þ,m0Þ: Thus, the unique valid alternative is that

Figure 6. Admissible cases when three consecutive HOC functions are compared.
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HOCðQrðm� 2Þ,m� 2Þ > HOCðQm,m�1
r ,m� 1Þ (see Figure 6(c)), and hence,

combination 2–1 can be analysed separately to give PðmÞ ¼ ½QrðmÞ,Q
m,m�1
r Þ,

Pðm� 1Þ ¼ ½Qm,m�1
r , qm�1l0 Þ and the interval P(m� 2) starting from Qrðm� 2Þ:

(d) Case 2–2: When the pairs of curves HOC(Qr,m), HOC(Qr,m� 1) and
HOC(Qr,m� 1), HOC(Qr,m� 2) are both of the form 2 (see Figure 6(d)),
combination 2–2 is reduced to evaluate independently two consecutive cases of
type (2) to give PðmÞ ¼ ½QrðmÞ,Q

m,m�1
r Þ, Pðm� 1Þ ¼ ½Qm,m�1

r ,Qm�1,m�2
r Þ and

P(m� 2) starting from Qm�1,m�2
r :

Concluding, any feasible combination between two pairs of consecutive curves HOC is
reduced to consider each pair separately. g

The procedure to determine the whole Pareto-optimal solution set, which is based on
the previous results, is sketched in Algorithm 1.

In the next section, we use this characterization of P to show that the method proposed
in Bookbinder and Chen [1] to solve their bicriteria problem is not correct.

5. Bookbinder and Chen’s approach

As in this article, Bookbinder and Chen [1] likewise addressed a bicriteria two-echelon
inventory/distribution system. In their problem, the first criterion coincides with our
function HOC, and the second one concerns the annual transportation cost
TC(Qr)¼TrD/Qr, (Tr represents the fixed transportation cost per shipment). While both
objectives, their cost TC and our criterion DI, are conceptually different, they are
characterized by the same type of function, namely, a strictly decreasing function in Qr.
Remark that DI(Qr) is equal to TC(Qr), if �(Qr)¼Tr. Therefore, it seems reasonable to
think that our solution method and their approach should provide the same solution for
the same instance. Nevertheless, as we show below, their approach does not always
provide good solutions. In particular, when demand is assumed to be known, their
solution set consists of either the point (Q0, n*) if Q0 � Q�r , or otherwise, an infinite
number of points (Qr, n), with n¼ n* and Qr 2 ½Q

�
r ,Q1�, where Q1¼min{B(n*), Q0}.

Figure 7. Unfeasible case when HOCðQrðm� 2Þ;m� 2Þ � HOCðQm;m�1
r ;m� 1Þ.
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Moreover, when Q0 � Q�r , they claim that the problem has its global minimum at (Q0, n*),

(see their theorem on p. 710 [1]). This assertion is wrong. As our Theorem 5 states, the

problem formulated in (3) does not have a unique solution. Moreover, different solutions

can be reached depending on the input data.
We consider Example 1 described in Bookbinder and Chen [1], and change only the

demand D¼ 10 000 to D¼ 90 000, leaving the same values for the rest of parameters.

That is, Ar¼ 30, Aw¼ 20 (transportation unit cost)Tr¼ 100, hr¼ 1, hw¼ 0.5 and

Q0¼ Jr¼V¼ 1000. According to (5), Q�r ¼ 600
ffiffiffiffiffi
30
p
¼ 3286:33, then we have Q�r � Q0.

Following Bookbinder and Chen’s method, the global minimum is achieved at (Q0, n*).

Since Q0¼ 1000 and n*¼ 0.816, their solution is given by (Q0, dn*e)¼ (1000, 1) with

HOC¼ 5000 and TC ¼ TrD=Qr ¼ 9000.
However, the solution above is not good, since we can find a new point that dominates

the former. Thus, following our method, we obtain that n0 ¼ 11 and n̂0 ¼ 3. Therefore,
�n0 > n̂0 þ 1, and according to Theorem 5, the optimal solution is (Q0¼ 1000, n¼ 3) with

costs HOC¼ 4300 and TC¼ 9000, respectively.
Secondly, when Q�r � Q0, Bookbinder and Chen pointed out (see assertion (2) of

their theorem on p. 710) that the problem has non-dominated solutions (Qr, n), with

n¼ n* and Qr 2 ½Q
�
r ,Q1�, where Q1¼min{B(n*),Q0}. B(n*) is given in (4) and

represents an upper bound necessary to guarantee that the function HOC(Qr, n) has

Algorithm 1: Procedure to determine the Pareto-optimal set for problem BBID

Data: D, Ar, Aw, hr, hw, Q0 and function �
1: Determine Q�r
2: Calculate n̂0
3: if Q0 � Q�r then

4: Calculate �n0
5: Determine P according to Theorem 5
6: else
7: Calculate �n
8: n �n
9: P(n) ;
10: P ;
11: Q QrðnÞ
12: while Q5Q0 and n� 1 � n̂0 do

13: if Qrðn� 1Þ ¼maxfQn, n�1
r ,Qrðn� 1Þg then

14: P(n)¼ [Q, minfQ0, q
n
l gÞ, with l ¼ HOCðQrðn� 1Þ, n� 1Þ

15: Q ¼ minfQ0,Qrðn� 1Þg
16: else

17: P(n)¼ [Q, minfQ0,Q
n, n�1
r gÞ

18: Q ¼ minfQ0,Q
n, n�1
r g

19: end if
20: P P[P(n)
21: n n� 1
22: end while
23: if n� 1 < n̂0 then

24: P P[P(n)¼ [Q, Q0]
25: end if

26: end if
27: return P
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its global minimum at ðQ�r , n
�Þ. Nevertheless, as it has been shown in previous sections,

non-dominated solutions are arranged at different intervals, changing the n integer

value in each interval.
To show this effect, we consider the same Example 2 proposed in [1], where the

parameters are given as: Ar¼ 100, Aw¼ 200, Tr¼ 400, D¼ 10 000, hr¼ 3, hw¼ 1, Jr¼ 1500

and V¼ 2000. Their procedure yields the following results: n� ¼ 2,Q�r ¼ 1000 and

Q0¼ 1500. Since Q�r � Q0, Bookbinder and Chen asserted that the problem has an

infinite number of non-dominated solutions with n¼ 2 and 1000�Qr� 1500. Also, they

even showed some of these solutions in their Table 1 on p. 711. Again, the authors have

been wrong, because point (Qr¼ 1500, n¼ 2), with HOC¼ 4333 and TC¼ 2667, was

proposed as non-dominated solution in that table. However, this point is dominated by

(Qr¼ 1500, n¼ 1), with HOC¼ 4250 and TC¼ 2666.66.
Therefore, the non-dominated solution set P should be determined according to

Algorithm 1. First, we must calculate �n ¼ 2 and bn0 ¼ 1, hence k ¼ �n�bn0 þ 1 ¼ 2.

Moreover, Qr 1ð Þ ¼ maxfQ2, 1
r ,Qr 1ð Þg ¼ 1000

ffiffiffi
2
p

, l ¼ HOCðQr 1ð Þ, 1Þ ¼ 6000=
ffiffiffi
2
p

and thus

q2l ¼ 1000
ffiffiffi
2
p
: Hence, Pð2Þ ¼ ½Qr 2ð Þ, q

2
l Þ and we proceed to evaluate n¼ 1 with Q ¼ Qr 1ð Þ:

Table 1. Thirty randomly generated instances of the BBID problem.

Ar Aw hw hr Q0 D

P1 4.70 1.98 3.79 5.24 90.90 256.56
P2 3.26 7.86 0.14 0.33 44.34 38.95
P3 5.89 5.57 4.04 7.42 28.13 918.46
P4 5.70 7.31 0.14 1.50 60.30 77.23
P5 7.13 5.13 0.18 1.68 64.10 19.76
P6 1.00 4.60 0.41 0.79 77.33 63.40
P7 9.05 3.86 0.14 1.12 68.65 45.32
P8 8.17 8.83 6.60 6.79 52.36 652.69
P9 3.37 8.09 0.63 1.72 6.36 4.11
P10 9.39 9.49 1.04 4.83 60.05 611.55
P11 8.07 2.21 0.01 0.06 75.25 18.22
P12 4.17 4.25 1.20 4.32 38.81 587.49
P13 1.98 5.49 0.43 0.55 99.49 92.27
P14 8.81 7.44 1.43 5.75 97.99 416.01
P15 5.91 8.33 0.22 1.31 38.02 69.45
P16 6.52 5.47 2.24 9.26 48.30 758.28
P17 8.25 5.39 2.32 5.94 17.48 97.77
P18 2.04 4.99 0.81 1.43 13.26 26.43
P19 9.08 8.42 0.18 1.93 52.90 52.47
P20 7.94 3.13 1.08 6.16 29.23 689.42
P21 1.07 7.53 0.08 0.10 62.92 43.00
P22 7.59 6.46 0.04 0.12 13.35 76.87
P23 9.90 2.12 2.75 5.73 26.70 166.27
P24 5.34 5.90 0.36 1.85 29.17 44.79
P25 9.37 6.52 0.05 1.37 37.24 97.04
P26 7.51 8.53 0.20 0.77 68.50 94.92
P27 1.05 4.98 0.26 1.67 19.85 73.75
P28 4.45 6.17 0.11 0.26 42.89 12.90
P29 1.87 6.52 0.62 1.07 39.12 97.09
P30 7.48 8.01 0.97 0.99 58.16 96.30
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Since n� 1 ¼ 0 <bn0, the algorithm finishes determining Pð1Þ ¼ ½Qr 1ð Þ,Q0�, therefore, the

Pareto-solution set contains two intervals, namely,

P ¼ fðQr, 2Þ : Qr 2 ½Qr 2ð Þ,Qr 1ð ÞÞg [ fðQr, 1Þ : Qr 2 ½Qr 1ð Þ,Q0�g

¼ fðQr, 2Þ : Qr 2 ½1000, 1000
ffiffiffi
2
p
�g [ fðQr, 1Þ : Qr 2 ½1000

ffiffiffi
2
p

, 1500�g

Hence, for Qr � 1000
ffiffiffi
2
p

, all those solutions proposed by Bookbinder and Chen’s

method are not efficient and are dominated by points (Qr, n¼ 1).

6. Computational results

The procedure described in Algorithm 1 was implemented in C using LEDA libraries on a

HP-712/60 workstation. In order to check the efficiency of this algorithm, multiple

instances were randomly generated. The input data were obtained from uniform

distributions on intervals, where the minimum and maximum values were different

random numbers. In Table 1, 30 instances are shown.
The Pareto-optimal solution sets for the problems in Table 1 are depicted in Table 2,

where the running times have been omitted since they are negligible.
The efficiency of our procedure has been tested. This test consists of generating 1000

random points for each instance. Then, we choose those which are non-dominated by

using an enumerative comparison algorithm. We compare our Pareto solution set with the

non-dominated randomly generated points. For each non-dominated generated point,

we have to determine whether the point is included in the Pareto-optimal solution set

proposed or it is dominated by a point in that set. In all the instances, the considered

points either belong to our solution set or they are dominated by points in our Pareto-

optimal solution set.

7. Conclusions and final remarks

In this article, we have studied a non-linear biobjective optimization model for a two-

echelon serial inventory/distribution system under deterministic demand. We have

characterized the non-dominated optimal solution set and proposed an algorithm to

generate it.
A similar model was studied by Bookbinder and Chen [1], but unfortunately their

solution method is not correct as we have shown in a previous section. The complete

analysis of the problem requires a detailed study of the model. In this analysis, the

problem is a mixed-integer non-linear two-objective optimization model, where neither

the tools of continuous nor discrete optimization are directly applicable. We have

performed this analysis decomposing the problem and integrating the solutions

obtained in each subproblem into the final solution set. Two goals have been achieved

in this article: to analyse and solve a mixed-integer non-linear two-objective

optimization model, and to correct the solution of a model already proposed in the

literature.
Further research could be carried out to study the biechelon inventory/distribution

system here addressed but considering more than two criteria. Also, it could be interesting

to study the behaviour of the non-linear biobjective optimization model, here studied, on a

multi-echelon serial inventory/distribution system or, in general, on multi-echelon systems.
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Table 2. Pareto-optimal solution sets for the problems shown in Table 1.

Problem Variables Pareto-optimal solution set

P1 Qr [25.57, 90.90]
n 1

P2 Qr [34.52, 44.34]
n 2

P3 Qr [28.13, 28.13]
n 2

P4 Qr [36.66, 60.30] [26.57, 36.66) [24.60, 25.37)
n 2 3 4

P5 Qr [23.73, 64.10] [14.35, 23.73)
n 1 2

P6 Qr [29.98, 77.33] [18.67, 26.12)
n 1 2

P7 Qr [35.34, 68.65] [28.10, 35.34)
n 1 2

P8 Qr [52.36, 52.36]
n 1

P9 Qr [5.09, 6.36]
n 2

P10 Qr [54.27, 60.05]
n 2

P11 Qr [75.25, 75.25]
n 1

P12 Qr [36.60, 38.81]
n 2

P13 Qr [50.06, 99.49]
n 1

P14 Qr [48.49, 97.99] [38.10, 46.31)
n 1 2

P15 Qr [30.24, 38.02] [26.25, 29.54)
n 2 3

P16 Qr [44.31, 48.30] [34.93, 42.94)
n 1 2

P17 Qr [17.48, 17.48]
n 1

P18 Qr [13.26, 13.26] [10.34, 12.21]
n 1 2

P19 Qr [49.54, 52.90] [28.60, 49.54) [23.33, 28.60)
n 1 2 3

P20 Qr [29.23, 29.23]
n 2

P21 Qr [48.06, 62.92]
n 2

P22 Qr [13.35, 13.35]
n 12

P23 Qr [26.41, 26.70]
n 1

P24 Qr [27.09, 29.17] [18.33, 27.09)
n 1 2

P25 Qr [37.24, 37.24]
n 4

P26 Qr [63.62, 68.50] [48.00, 63.62)
n 1 2

(continued)
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Table 2. Continued.

Problem Variables Pareto-optimal solution set

P27 Qr [15.34, 19.85] [11.88, 15.34) [10.55, 11.88)
n 3 4 5

P28 Qr [32.46, 42.89]
n 1

P29 Qr [39.02, 39.12] [24.27, 29.23)
n 1 2

P30 Qr [54.89, 58.16]
n 1
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